Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
FEBS Open Bio ; 13(6): 992-1000, 2023 06.
Article in English | MEDLINE | ID: covidwho-2317554

ABSTRACT

With advances in sequencing technology, metatranscriptome sequencing from a variety of environmental and biological sources has revealed the existence of various previously unknown RNA viruses. This review presents recent major RNA virome studies sampled from invertebrate and vertebrate species as well as aquatic environments. In particular, we focus on severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and related RNA virus identification through metatranscriptome sequencing analyses. Recently developed bioinformatics software and databases for RNA virus identification are introduced. A relationship between newly identified RNA viruses and endogenous viral elements in host genomes is also discussed.


Subject(s)
COVID-19 , RNA Viruses , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/genetics , RNA Viruses/genetics , RNA, Viral/genetics
2.
OMICS ; 26(7): 361-371, 2022 07.
Article in English | MEDLINE | ID: covidwho-1908721

ABSTRACT

Drug repurposing is of interest for therapeutics innovation in many human diseases including coronavirus disease 2019 (COVID-19). Methodological innovations in drug repurposing are currently being empowered by convergence of omics systems science and digital transformation of life sciences. This expert review article offers a systematic summary of the application of artificial intelligence (AI), particularly machine learning (ML), to drug repurposing and classifies and introduces the common clustering, dimensionality reduction, and other methods. We highlight, as a present-day high-profile example, the involvement of AI/ML-based drug discovery in the COVID-19 pandemic and discuss the collection and sharing of diverse data types, and the possible futures awaiting drug repurposing in an era of AI/ML and digital technologies. The article provides new insights on convergence of multi-omics and AI-based drug repurposing. We conclude with reflections on the various pathways to expedite innovation in drug development through drug repurposing for prompt responses to the current COVID-19 pandemic and future ecological crises in the 21st century.


Subject(s)
COVID-19 Drug Treatment , Artificial Intelligence , Drug Repositioning , Humans , Machine Learning , Pandemics
3.
OMICS ; 26(6): 339-347, 2022 06.
Article in English | MEDLINE | ID: covidwho-1878748

ABSTRACT

Drug repurposing has broad importance in planetary health for therapeutics innovation in infectious diseases as well as common or rare chronic human diseases. Drug repurposing has also proved important to develop interventions against the COVID-19 pandemic. We propose a new approach for drug repurposing involving two-stage prediction and machine learning. First, diseases are clustered by gene expression on the premise that similar patterns of altered gene expression imply critical pathways shared in different disease conditions. Next, drug efficacy is assessed by the reversibility of abnormal gene expression, and results are clustered to identify repurposing targets. To cluster similar diseases, gene expression data from 262 cases of 31 diseases and 268 controls were analyzed by Uniform Manifold Approximation and Projection for Dimension Reduction followed by k-means to optimize the number of clusters. For evaluation, we examined disease-specific gene expression data for inclusion, body myositis, polymyositis, and dermatomyositis (DM), and used LINCS L1000 characteristic direction signatures search engine (L1000CDS2) to obtain lists of small-molecule compounds that reversed the expression patterns of these specifically altered genes as candidates for drug repurposing. Finally, the functions of affected genes were analyzed by Gene Set Enrichment Analysis to examine consistency with expected drug efficacy. Consequently, we found disease-specific gene expression, and importantly, identified 20 drugs such as BMS-387032, phorbol-12-myristate-13-acetate, mitoxantrone, alvocidib, and vorinostat as candidates for repurposing. These were previously noted to be effective against two of the three diseases, and have a high probability of being effective against the other. That is, inclusion body myositis and DM. The two-stage prediction approach to drug repurposing presented here offers innovation to inform future drug discovery and clinical trials in a variety of human diseases.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Drug Repositioning , COVID-19/genetics , Cluster Analysis , Drug Repositioning/methods , Gene Expression , Humans , Machine Learning , Pandemics
4.
Front Genet ; 13: 801382, 2022.
Article in English | MEDLINE | ID: covidwho-1785331

ABSTRACT

The Vero cell line is an immortalized cell line established from kidney epithelial cells of the African green monkey. A variety of Vero sublines have been developed and can be classified into four major cell lineages. In this study, we determined the whole-genome sequence of Vero E6 (VERO C1008), which is one of the most widely used cell lines for the proliferation and isolation of severe acute respiratory syndrome coronaviruses (SARS-CoVs), and performed comparative analysis among Vero JCRB0111, Vero CCL-81, Vero 76, and Vero E6. Analysis of the copy number changes and loss of heterozygosity revealed that these four sublines share a large deletion and loss of heterozygosity on chromosome 12, which harbors type I interferon and CDKN2 gene clusters. We identified a substantial number of genetic differences among the sublines including single nucleotide variants, indels, and copy number variations. The spectrum of single nucleotide variants indicated a close genetic relationship between Vero JCRB0111 and Vero CCL-81, and between Vero 76 and Vero E6, and a considerable genetic gap between the former two and the latter two lines. In contrast, we confirmed the pattern of genomic integration sites of simian endogenous retroviral sequences, which was consistent among the sublines. We identified subline-specific/enriched loss of function and missense variants, which potentially contribute to the differences in response to viral infection among the Vero sublines. In particular, we identified four genes (IL1RAP, TRIM25, RB1CC1, and ATG2A) that contained missense variants specific or enriched in Vero E6. In addition, we found that V739I variants of ACE2, which functions as the receptor for SARS-CoVs, were heterozygous in Vero JCRB0111, Vero CCL-81, and Vero 76; however, Vero E6 harbored only the allele with isoleucine, resulting from the loss of one of the X chromosomes.

SELECTION OF CITATIONS
SEARCH DETAIL